

ErlyWeb
A web development framework for Erlang

Yariv Sadan
12/6/2007

Benefits

● Erlang/OTP

– Industrial-strength platform built by Ericsson (“better than 5 nines”)

● Functional programming

● Concurrent programming

● MVC

● Component-oriented

● Database abstraction (ErlyDB)

● Protection from SQL injection attacks

● Hot code swapping

● Best platform for Comet applications

● Lots of fun!

ErlyDB: Database Abstraction

DDL:

CREATE TABLE painting (

 id integer auto_increment primary key,

 title varchar(255))

painting.erl:

-module(painting).

-compile(export_all).

DB Access Code Example

Title = “landscape”,

P = painting:new(Title), %% create a new record

painting:transaction(

 fun() ->

 P1 = painting:save(P), %% INSERT

 P2 = painting:title(P1, “beach”), %% change the title

 painting:save(P2), %% UPDATE

 %% SELECT

 Paintings = painting:find({'or', [{id, '=', 1}, {title,like,”monster%”}]}),

 painting:delete(P) %% DELETE

end)

More ErlyDB Features

● Relations (many-to-one, one-to-man, many-to-
many)
– artist:add_painting(Artist, Painting).

– artist:paintings(Artist, {title,'=',”beach”}).

● Drivers for MySQL, Postgres and Mnesia
● Supports multiple DB's
● DB connection pooling

– Uses Erlang concurrency
● Dispatcher process + one process per connection

– Transactions “Just Work”

DB Connection Pooling (MySQL)

DB1

DB2

ErlyWeb

Dispatcher

Client Erlang VM

1

2

3

4
5

6

7

Pool1
Pool2

Uses for Concurrency in Webapps

● Connection pooling (with transactions)
● Parallelizing DB queries, component renderings,

web service calls, etc. (faster page loads!)
● Performing background tasks

– Updating counters, processing data/assets,
communicating with backend services, etc.

● Storing shared (session) data in memory for fast
access

● Comet

Components

● Component = Controller + View
● Components can be embedded in other

components
– Controllers decide what to embed, views decide

where

● Phased rendering
– First, render requested component

– Pass the result (if any) to the enclosing component

Controller Example

-module(artist_controller).

-export([show/2]).

show(A, Id) ->

 %% look up the artist and related paintings

 Artist = artist:find_id(Id),

 Paintings = artist:paintings_with(Artist, [{order_by, {created_on, desc}}, {limit, 10}]),

 %% pass the artist name and a list of of rendered 'painting' subcomponents

 %% to the view function

 [{data, artist:name(Artist)},

 [{ewc, painting, [A, Painting]} || Painting <- Paintings]].

Views

● Views are Erlang modules (benefits: speed,
reusability)

● Each controller has a view
● View function names map to controller function

names
● View functions return iolists (nested lists of

strings and/or binaries)
● [“what”, [$a, <<”great”>>, [<<”painting”>>]]]

● Can be implemented in Erlang or ErlTL
● More template languages can be plugged in.

ErlTL Example

<%@ index({ok, {Username, Painting}}) %>

Hi <% Username %>!

Here's today's top painting: <% Painting %>

<%@ index({error, Msgs}) %>

Oops, the following errors occured:

<% [err(Msg) || Msg <- Msgs] %>

<%@ err(Msg) %><div class=”error”><% Msg %></div>

Components Are Composable

Components Are Reusable

Components Are Reusable
(continued)

Phased Rendering Example

hook(A) ->

 {phased,

 {ewc, A}, %% first, render the requested component

 fun({ewc, Controller, _View, _Func, _Params}, Data, _PhasedVars) ->

 case Controller of

 ajax_controller ->

 %% if the client requested the 'ajax' component, return rendered result unchanged

 {data, Data};

 _ ->

 %% otherwise, embed the result in html_container before returning

 {ewc, html_container, [A, {data, Data}]}

 end

end}

ErlyWeb is Comet-Ready

● Erlang was designed for building scalable, highly
available (soft) real-time systems
– Message passing primitives

– Lightweight processes (location transparent)

– Preemptive scheduling

– Per-process heaps

– Immutable data

– Port-based interface to native code

– Mnesia (distributed store for shared data)

– Hot code swapping.

– It scales (both vertically and horizontally)

Apache vs. Yaws

● Source: http://www.sics.se/~joe/apachevsyaws.html

Comet in Vimagi (Experimental)

Comet Implementation in Vimagi

● Users are permanently connected (except for
during page transitions)

● One process per user
● Use Mnesia to look up PIDs by user names.
● Built a lightweight IM backend

Thank you

Links

● ErlyWeb (http://erlyweb.org)
● Erlang (http://erlang.org)
● Yaws (http://yaws.hyber.org)
● Vimagi (http://vimagi.com)
● BeerRiot (http://beerriot.com)

http://erlyweb.org/
http://erlang.org/
http://yaws.hyber.org/
http://vimagi.com/
http://beerriot.com/

